RobotControlHSM State Pseudo Code
Key:
Capital Case used for variables and function names (Ed’s Convention)
/* comments */
// place holder for code
Only code needed for lowest level state (During func)
Write Durings for everything, but comment out the function call if not needed

Start RobotControlHSMS (CurrentEvent)
	// Handle history or irregular entry here
If not history entry
		CurrentState = WaitingToStart;
	End
	
	/* Call ENTRY function for RobotControlHSMS */
	Run RobotControlHSMS(CurrentEvent)
End Start

RobotControlHSMS_t Run RobotControlHSMS (CurrentEvent)
	Init MakeTransition, NextState, EntryEventKind, ReturnEvent
	/* React differently based on the state you’re in */
Switch (CurrentState)
		Case WaitingToStart
			/* Execute During to respond to event */
			CurrentEvent = DuringWaitingToStart (CurrentEvent);

			/* Handle all events relevant to WaitingToStart*/
			If ES_NO_EVENT does not == CurrentEvent
				Switch (CurrentEvent)
					Case EV_ROUND_1_START:
						// Any transition action here
						NextState = Jousting;
						MakeTransition = True;
						EntryEventKind = EV_ENTRY;
						ReturnEvent = CurrentEvent;
						break;
				End switch
			End if
			Break;
	
		Case Jousting
			/* Execute During to respond to event */
			CurrentEvent = DuringJousting (CurrentEvent);

			/* Handle all events relevant to Jousting*/
			If ES_NO_EVENT does not == CurrentEvent
				Switch (CurrentEvent)
					Case EV_RECESS_1_START:
Case EV_RECESS_2_START:
Case EV_RECESS_3_START:
Case EV_CRAWL_SPEED_REACHED:
						// Any transition action here
						NextState = GetHome;
						MakeTransition = True;
						EntryEventKind = EV_ENTRY;
						ReturnEvent = CurrentEvent;
						break;
				End switch
			End if
			Break;

		Case GetHome:
			/* Execute During to respond to event */
			CurrentEvent = DuringGetHome (CurrentEvent);

			/* Handle all events relevant to GetHome*/
			If ES_NO_EVENT does not == CurrentEvent
				Switch (CurrentEvent)
					Case EC_AWAY_WALL_HIT:
						// Any transition action here
						NextState = FiringAtGoal;
						MakeTransition = True;
						EntryEventKind = EV_CONDITIONAL_ENTRY;
						ReturnEvent = CurrentEvent;
						break;
					Case EC_HOME_WALL_HIT:
						// Any transition action here
						NextState = Reloading;
						MakeTransition = True;
						EntryEventKind = EV_CONDITIONAL_ENTRY;
						ReturnEvent = CurrentEvent;
						break;
				End switch
			End if
			Break;

		Case Reloading:
			/* Execute During to respond to event */
			CurrentEvent = DuringReloading (CurrentEvent);

			/* Handle all events relevant to Reloading*/
			If ES_NO_EVENT does not == CurrentEvent
				Switch (CurrentEvent)
					Case EV_ROUND_3_START:
						// Any transition action here
						NextState = Jousting;
						MakeTransition = True;
						EntryEventKind = EV_ENTRY;
						ReturnEvent = CurrentEvent;
						break;

					Case EV_RECESS_3_START:
						// Any transition action here
						NextState = GetHome;
						MakeTransition = True;
						EntryEventKind = EV_ENTRY;
						ReturnEvent = CurrentEvent;
						break;

				End switch
			End if
			Break;

		Case FiringAtGoal:
			/* Execute During to respond to event */
			CurrentEvent = DuringFiringAtGoal (CurrentEvent);

			/* Handle all events relevant to FiringAtGoal*/
			If ES_NO_EVENT does not == CurrentEvent
				Switch (CurrentEvent)
					Case EV_ROUND_2_START:
						If (CheckingForGoal == QueryFiringAtGoal())
							// Any transition action here
							NextState = Jousting;
							MakeTransition = True;
							EntryEventKind = EV_ENTRY;
							ReturnEvent = CurrentEvent;
						End if
						break;

					Case EV_OUT_OF_BALLS:
						If (Shooting == QueryFiringAtGoal())
							// Any transition action here
							NextState = Jousting;
							MakeTransition = True;
							EntryEventKind = EV_ENTRY;
							ReturnEvent = CurrentEvent;
						End if
						break;

					Case EV_RECESS_2_START:
						// Any transition action here
						NextState = GetHome;
						MakeTransition = True;
						EntryEventKind = EV_ENTRY;
						ReturnEvent = CurrentEvent;
						break;
				End switch
			End if
			Break;
	End switch
	
	/* Handle transitions between states */
	If (MakeTransition)
		/* Exit this state */
[bookmark: _GoBack]		CurrentEvent.EventType = EV_EXIT;
		Run RobotControlHSMS(CurrentEvent)

/* Enter next state */
CurrentState = NextState; // Change to next state
CurrentEvent.EventType = EventEntryKind;
Run RobotControlHSMS(CurrentEvent)
	End if

Return ReturnEvent
End Run

RobotControlHSMS_t Query RobotControlHSMS (CurrentEvent)
	Return CurrentState;
End Query

RobotControlHSMS_t During WaitingToStart (CurrentEvent)
	Init ReturnEvent
	
	If (EV_ENTRY == CurrentEvent)
		// No Entry actions
		/* Start lower level SM(s) */
		StartWaitingToStartHSMS(CurrentEvent)

	Else if (EV_ExIt == CurrentEvent)
		/* Exit lower level SM(s) */
		RunWaitingToStartHSMS(CurrentEvent)
		// No Exit actions

	Else
		/* Pass event to lower level SM(s) */
		ReturnEvent = RunWaitingToStartHSMS (CurrentEvent)
		// No internal event response
	End if
	return ReturnEvent // or CurrentEvent to avoid event consumption
End During

RobotControlHSMS_t During Jousting (CurrentEvent)
	Init ReturnEvent
	
	If (EV_ENTRY == CurrentEvent)
		// No Entry actions
		/* Start lower level SM(s) */
		StartJoustingHSMS(CurrentEvent)

	Else if (EV_ExIt == CurrentEvent)
		/* Exit lower level SM(s) */
		RunJoustingHSMS(CurrentEvent)
		// No Exit actions

	Else
		/* Pass event to lower level SM(s) */
		ReturnEvent = RunJoustingHSMS (CurrentEvent)
		// No internal event response
	End if
	return ReturnEvent // or CurrentEvent to avoid event consumption
End During

RobotControlHSMS_t During FiringAtGoal (CurrentEvent)
	Init ReturnEvent
	
	If (EV_ENTRY == CurrentEvent)
		// No Entry actions
		/* Start lower level SM(s) */
		StartFiringAtGoalHSMS(CurrentEvent)

	Else if (EV_ExIt == CurrentEvent)
		/* Exit lower level SM(s) */
		RunFiringAtGoalHSMS(CurrentEvent)
		// No Exit actions

	Else
		/* Pass event to lower level SM(s) */
		ReturnEvent = RunFiringAtGoalHSMS (CurrentEvent)
		// No internal event response
	End if
	return ReturnEvent // or CurrentEvent to avoid event consumption
End During

RobotControlHSMS_t During Reloading (CurrentEvent)
	Init ReturnEvent
	
	If (EV_ENTRY == CurrentEvent)
		// No Entry actions
		/* Start lower level SM(s) */
		StartReloadingHSMS(CurrentEvent)

	Else if (EV_ExIt == CurrentEvent)
		/* Exit lower level SM(s) */
		RunReloadingHSMS(CurrentEvent)
		// No Exit actions

	Else
		/* Pass event to lower level SM(s) */
		ReturnEvent = RunReloadingHSMS (CurrentEvent)
		// No internal event response
	End if
	return ReturnEvent // or CurrentEvent to avoid event consumption
End During

RobotControlHSMS_t During GetHome (CurrentEvent)
	Init ReturnEvent
	
	If (EV_ENTRY == CurrentEvent)
		// No Entry actions
		/* Start lower level SM(s) */
		StartGetHomeHSMS(CurrentEvent)

	Else if (EV_ExIt == CurrentEvent)
		/* Exit lower level SM(s) */
		RunGetHomeHSMS(CurrentEvent)
		// No Exit actions

	Else
		/* Pass event to lower level SM(s) */
		ReturnEvent = RunGetHomeHSMS (CurrentEvent)
		// No internal event response
	End if
	return ReturnEvent // or CurrentEvent to avoid event consumption
End During

